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Problem definition

• Let V = {1, . . . , n}, let E be a set of subsets of cardinality at least two of V .
Consider an unconstrained binary polynomial optimization problem:

max
∑

e∈E

ce
∏

v∈e

zv (BPO)

s.t. zv ∈ {0, 1}, ∀v ∈ V

• Problem BPO is NP-hard in general.

• Applications: Satisfiability problems (MAX-SAT), inference in higher-order
graphical models, low-rank Boolean matrix/tensor factorization, ...

• Define ze :=
∏

v∈e zv for all e ∈ E:

max
∑

e∈E

ceze, (ℓBPO)

s.t. ze =
∏

v∈e

zv, ∀e ∈ E

zv ∈ {0, 1}, ∀v ∈ V .
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Multilinear sets and polytope

• We define the multilinear set as:

S =
{

z ∈ {0, 1}V ∪E : ze =
∏

v∈e

zv, ∀e ∈ E
}

.

• We define the multilinear polytope as the convex hull of the multilinear set:

Pm = conv(S)

• If |e| = 2 for all e ∈ E, then the objective function of Problem (BPO) is
quadratic and Pm is the Boolean quadric polytope QP (Padberg, 89).
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Hypergraph representation

• There is a bijection between multilinear sets and hypergraphs: one node v for
each zv, one edge e for each ze, the edge e corresponding to ze is {v : v ∈ e}

z12 = z1z2

z24 = z2z4

z123 = z1z2z3

z134 = z1z3z4

1

2

3

4

• S → S(G) and Pm → Pm(G).

• For quadratic sets, we obtain the graph representation of QP(G) (Padberg, 89).

z12 = z1z2

z24 = z2z4

z34 = z3z4

1

2

3

4

• The rank of G is the maximum cardinality of any edge in E.
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The Boolean quadric polytope

• Replace each bilinear term zij = zizj, by its convex hull over the unit hypercube
and use

⋂

i conv(Si) ⊇ conv(
⋂

i Si) to obtain the standard linearization, or the
McCormick relaxation, of QP(G):

QPLP(G) =
{

z : zij ≥ 0, zij ≥ zi + zj − 1, zij ≤ zi, zij ≤ zj, ∀(i, j) ∈ E
}

.

• QP(G) = QPLP
G iff G is an acyclic graph (Padberg 89).

• Let QPC(G) be polytope obtained by adding all odd cycle inequalities to
QPLP(G); QP(G) = QPC(G) iff G is a series-parallel graph (Barahona 86,
Padberg 89).

• Optimizing over QPLP(G) and QPC(G) can be done in polynomial-time.

• Goal: obtaining similar results for higher degree multilinear sets in terms of
easily verifiable conditions on the structure of underlying hypergraphs.
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Cycles in hypergraphs

• Acyclic hypergraphs in increasing degree of generality:

Berge− acyclic ⊂ γ −acyclic ⊂ β −acyclic ⊂ α −acyclic

• A Berge-cycle in G of length t for some t ≥ 2, is a sequence C =
v1, e1, v2, e2, . . . , vt, et, v1 with the following properties:

– v1, v2, . . . , vt are distinct nodes and e1, e2, . . . , et are distinct edges of G,
– vi, vi+1 ∈ ei for i = 1, . . . , t− 1, and vt, v1 ∈ et.

• A hypergraph is Berge-acyclic iff it contains no Berge-cycles.

3

1 2

Berge-cycle:
C = v1, e12, v2, e123, v1

A Berge-acyclic Hypergraph
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γ-acyclic hypergraphs

• A γ-cycle in G is a Berge-cycle C = v1, e1, v2, e2, . . . , vt, et, v1 such that t ≥ 3,
and the node vi belongs to ei−1, ei and no other ej, for all i = 2, . . . , t.

• A hypergraph is called γ-acyclic iff it contains no γ-cycles.

3

1 2

1

2

3

451 2

3

4

No γ-cycles; Berge-cycles of length two and three. γ-cycle: C = v1, e12, v2, e123, v3, e13, v1

A γ-acyclic hypergraph
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β-acyclic hypergraphs

• A β-cycle in G is a γ-cycle C = v1, e1, v2, e2, . . . , vt, et, v1 such that the node
v1 belongs to e1, et and no other ej.

• A hypergraph is called β-acyclic iff it contains no β-cycles.

1 2

34

1

2 3

1 2

34

6 5

Examples of β-cycles

A β-acyclic hypergraph
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α-acyclic hypergraphs

• Let G = (V,E) be a hypergraph and let C = e1, e2, . . . , et, et+1 with et+1 := e1
for some t ≥ 3. Define si := ei ∩ ei+1 for all i ∈ [t]. Then C is α-cycle of
length t in G, if

(si ∪ sj ∪ sk) \ e 6= ∅ ∀1 ≤ i < j < k ≤ ℓ, ∀e ∈ E.

• A hypergraph is called α-acyclic iff it contains no α-cycles.

1

2 3

1

2 3

1 2

34
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Extended formulations

• When does the multilinear polytope of acyclic hypergraphs admit a polynomial-
size extended formulation which can be constructed in polynomial-time?
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Decomposability of multilinear sets

• Consider hypergraphs G1 = (V1, E1) and G2 = (V2, E2) such that V1 ∩ V2 6= ∅.
Denote by G1 ∪ G2, the hypergraph (V1 ∪ V2, E1 ∪ E2), and by G1 ∩ G2, the
hypergraph (V1 ∩ V2, E1 ∩ E2).

• Let G := G1 ∪G2. Then Pm(G) is decomposable into Pm(G1) and Pm(G2), if

Pm(G) = Pm(G1) ∩ Pm(G2),

i.e., the system comprised a description of Pm(G1) and a description of Pm(G2),
is a description of Pm(G).

• A hypergraph G = (V,E) is complete if all subsets of V of cardinality at least
two are in E.

• Given V ′ ⊂ V , the section hypergraph of G induced by V ′ is G′ = (V ′, E′),
where E′ = {e ∈ E : e ⊆ V ′}.

• Theorem: Let G1, G2 be section hypergraphs of G such that G1 ∪G2 = G and
G1 ∩G2 is a complete hypergraph. Then the set Pm(G) is decomposable into
Pm(G1) and Pm(G2).
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Acyclic graphs

• Theorem (Padberg 89): The Boolean quadric polytope QP(G) of an acyclic
graph G = (V,E) has a formulation with 4|E| inequalities.
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Acyclic graphs

• Theorem (Padberg 89): The Boolean quadric polytope QP(G) of an acyclic
graph G = (V,E) has a formulation with 4|E| inequalities.
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Acyclic graphs

• Theorem (Padberg 89): The Boolean quadric polytope QP(G) of an acyclic
graph G = (V,E) has a formulation with 4|E| inequalities.
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Acyclic graphs

• Theorem (Padberg 89): The Boolean quadric polytope QP(G) of an acyclic
graph G = (V,E) has a formulation with 4|E| inequalities.
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The multilinear polytope of acyclic hypergraphs

• Acyclic hypergraphs in increasing degree of generality:

Berge− acyclic ⊂ γ −acyclic ⊂ β −acyclic ⊂ α −acyclic

• Optimizing over the multilinear polytope of α-acyclic hypergraphs is NP-hard
in general.

• Theorem: The multilinear polytope of an α-acyclic hypergraph of rank r has
an extended formulation with at most O(2r|V |) variables and inequalities.

• If r is upper bounded by the log of a polynomial in the size of the hypergraph,
then the multilinear polytope has a polynomial-size extended formulation.

• Equivalent to assuming bounded treewidth for the intersection graph:
Wainwright-Jordan 2004, Laurent 2009, Bienstock-Munoz 2018.
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α-acyclic hypergraphs

• Theorem: The multilinear polytope of an α-acyclic hypergraph of rank r has
an extended formulation with at most O(2r|V |) variables and inequalities.
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α-acyclic hypergraphs
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α-acyclic hypergraphs
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α-acyclic hypergraphs

• Theorem: The multilinear polytope of an α-acyclic hypergraph of rank r has
an extended formulation with at most O(2r|V |) variables and inequalities.
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The multilinear polytope of β-acyclic hypergraphs

• A β-cycle of length q for q ≥ 3 in G is a sequence v1, e1, v2, e2, . . . , vq, eq, v1
such that v1, v2, . . . , vq are distinct nodes, e1, e2, . . . , eq are distinct edges, and
vi belongs to ei−1, ei and no other edges for all i = 1, . . . , q.

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r − 4)|V |+ 4|E| inequalities.

• The defining inequalities are very sparse: at most four variables with non-zero
coefficients. All coefficients are ±1 and all right-hand sides are 0/1.
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The multilinear polytope of β-acyclic hypergraphs

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r−4)|V |+4|E| inequalities (ADP and AK,
2023).

• A node is a nest point (β-leaf) if the edges containing it are totally ordered.

• A hypergraph is β-acyclic iff we can recursively remove nest points till obtaining
an empty set.
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The multilinear polytope of β-acyclic hypergraphs

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r−4)|V |+4|E| inequalities (ADP and AK,
2023).
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The multilinear polytope of β-acyclic hypergraphs

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r−4)|V |+4|E| inequalities (ADP and AK,
2023).

• The multilinear polytope of a pointed hypergraph G = (V,E) consists of
5|V |+ 2 inequalities.
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The original space

• Convex hull characterizations and valid inequalities for the multilinear polytope
in the original space

• Strong LP relaxations for general mixed-integer polynomial optimization
problems
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Standard linearization of multilinear sets

• Replace each multilinear term ze =
∏

v∈e zv, by its convex hull over the
unit hypercube and use

⋂

i conv(Si) ⊇ conv(
⋂

i Si) to obtain the standard

linearization Pm
LP(G) of S(G):

Pm
LP(G) =

{

z : zv ≤ 1, ∀v ∈ V, ze ≥ 0, ze ≥
∑

v∈e

zv − |e|+ 1, ∀e ∈ E,

ze ≤ zv,∀v ∈ e, ∀e ∈ E
}

.

• Recall that QP(G) = QPLP(G) iff G is an acyclic graph (Padberg 89).

• Theorem: Pm
LP(G) = Pm(G) if and only if G is a Berge-acyclic hypergraph.
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The standard linearization vs. the convex hull relaxation

• Theorem: Pm
LP(G) = Pm(G) if and only if G is a Berge-acyclic hypergraph.

• Proof sketch:

– If G has a Berge-cycle of length two; i.e., E(C) = {e1, e2} with |e1∩e2| ≥ 2,
the following is valid for SG:

∑

v∈e2\e1

zv + ze1 − ze2 ≤ |e2 \ e1|

Consider z̃v = 1 for all v ∈ e2 \ e1, z̃v = 1/2 for all v ∈ e1, z̃v = 0 for the
remaining nodes in G, z̃e1 = 1/2, z̃e2 = 0, z̃e = 1 for all e ⊆ e2 \ e1, z̃e = 0

for all e * e1 ∪ e2 and z̃e = 1/2 for all remaining edges in G. z̃ ∈ Pm
LP(G).

Substituting z̃ in the above inequality yields |e2 \ e1|+ 1/2− 0 � |e2 \ e1|.
– Let C be a Berge-cycle of minimum length t, where t ≥ 3. Since |ei∩ej| ≤ 1

for all ei, ej ∈ E, the subhypergraph GV (C) is a graph consisting of a

chordless cycle. To show Pm(G) ⊂ Pm
LP (G) is suffices to show that

Pm(GV (C)) ⊂ Pm
LP(GV (C)). The polytope Pm(GV (C)) is integral while

Pm
LP(GV (C)) is not integral.

⇒ if G contains a Berge-cycle, we have Pm(G) ⊂ Pm
LP(G)
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The standard linearization vs. the convex hull relaxation

• Suppose that G is a Berge-acyclic hypergraph. Then there exists an edge ẽ of
G such that ẽ ∩ {v : ∃e ∈ E(G) \ ẽ, v ∈ e} = {ṽ}, for some ṽ ∈ V (G).

⇒ if G is Berge-acyclic, we have Pm(G) = Pm
LP(G)
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Flower inequalities

• Let e0 ∈ E and let ek, k ∈ K, be the set of all edges adjacent to e0. Let
T ⊆ K such that

∣

∣

∣
(e0 ∩ ei) \

⋃

j∈T\{i}

(e0 ∩ ej)
∣

∣

∣
≥ 2, ∀i ∈ T.

• The flower inequality centered at e0 with neighbors ek, k ∈ T is:
∑

v∈e0\∪k∈T ek

zv +
∑

k∈T

zek − ze0 ≤ |e0 \ ∪k∈Tek|+ |T | − 1.

2
3

4
7

6
5

9

8

1

0

1

2
3 z1 + z4 + z5 + z6 + ze1 − ze0 ≤ 4

z1 + z5 + z6 + ze2 − ze0 ≤ 3,

z1 + z2 + z3 + z4 + ze3 − ze0 ≤ 4,

z1 + z4 + ze1 + ze3 − ze0 ≤ 3, z1 + ze2 + ze3 − ze0 ≤ 2

• The flower relaxation Pm
F (G) is obtained by adding the system of flower

inequalities centered at each edge of G to Pm
LP(G).
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The flower relaxation vs. the convex hull relaxation

• Theorem: Pm
F (G) = Pm(G) if and only if G is a γ-acyclic hypergraph.

• Given a rank-r γ-acyclic hypergraph G = (V,E), the separation problem over
all flower inequalities can be solved in O(r|E|2(|V |+ |E|)) operations.

• The separation problem for flower inequalities over general hypergraphs is
NP-hard (reduction from 3D matching).

• The separation problem for flower inequalities and running intersection
inequalities for fixed-rank hypergraphs can be solved in polynomial-time. More

precisely, in O(|E|(r2r|E|+ 2r
2
r3)) operations.
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Flower relaxation vs. recursive McCormick relaxations

• Recursive McCormick (RMC) relaxations are among the most popular
convexification techniques for binary polynomial optimization.

• Write each multilinear term ze =
∏

v∈e zv in a lifted space of variables as a
collection of bilinear equations zI∪J = zIzJ .

• Example: consider z1234 = z1z2z3z4, then we have z12 = z1z2, z34 = z3z4,
z1234 = z12z34 or z1234 = z1z234, z234 = z2z34 and z34 = z3z4.

• The quality and the size of these relaxations depend on the recursive sequence
and finding an optimal sequence amounts to solving a difficult combinatorial
optimization problem.

• Theorem: Let G be a hypergraph and let Pm
RMC(G) denote an RMC relaxation

of S(G). Then Pm
F(G) ⊆ Pm

RMC(G).
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Running intersection inequalities

• A multiset F of subsets of a finite set V has the running intersection property
if there exists an ordering p1, p2, . . . , pm of the sets in F such that

∀k ∈ {2, . . . ,m},∃j < k : N(pk) := pk ∩
(

⋃

i<k

pi

)

⊆ pj.

We refer to such an ordering as a running intersection ordering of F .

• Let e0 and ek, k ∈ K, be a collection of edges adjacent to e0 such that
Ẽ := {e0 ∩ ek : k ∈ K} has the running intersection property. Consider a
running intersection ordering of Ẽ. For each k ∈ K, let wk ⊆ N(e0 ∩ ek) such
that wk ∈ ∅ ∪ V ∪ E. We define a running intersection inequality centered at
e0 with neighbours ek, k ∈ K as

−
∑

k∈K

zwk
+

∑

v∈e0\
⋃

k∈K ek

zv +
∑

k∈K

zek − ze0 ≤ ω − 1,

where we define z∅ = 0, and ω =
∣

∣

∣
{k ∈ K : wk = ∅}

∣

∣

∣
+
∣

∣

∣
{e0 \

⋃

k∈K ek}
∣

∣

∣
.
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Running intersection inequalities

• Letting wk = ∅ for all k ∈ K, running intersection inequalities simplify to flower
inequalities.

4

e1

e2

e3

e0

e4

e5
e6

e7
e8

1

1

2

2

2

3

3

4

5

5

6

7

7

8

8
9

9

−zv5 − zv7 − zv8 + zv1 + zv2 + ze2 + ze3 + ze6 + ze7 + ze8 − ze0 ≤ 3,

−zv5 − zv7 − zv9 + zv1 + zv2 + ze2 + ze3 + ze6 + ze7 + ze8 − ze0 ≤ 3,

−2zv4 + zv2 + zv3 + ze1 + ze2 + ze4 + ze5 + ze8 − ze0 ≤ 4

• Any running intersection ordering of Ẽ leads to the same system of running
intersection inequalities centered at e0 with neighbors ek, k ∈ K.
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The running intersection relaxation

• The running intersection relaxation Pm
RI(G) is the polytope obtained by adding

to Pm
LP(G) all possible running intersection inequalities for S(G).

• If Pm(G) is not β-acyclic, then Pm(G) ⊂ Pm
RI(G).

• Let G be a β-acyclic hypergraph. Suppose that there exist no three edges
e0, e1, e2 ∈ E such that |e0∩e1∩e2| ≥ 2, (e0∩e1)\e2 6= ∅, and (e0∩e2)\e1 6= ∅.
Then Pm(G) = Pm

RI(G).

�
✁

✂

✄

☎

✧ ✆ ✆ ✆ ✧ ✧ ✝ ✞
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What about the multilinear polytope of β-acyclic

hypergraphs?

• From a computational perspective, sparsity is key to the effectiveness of cutting
planes in a branch-and-cut framework.

• For a rank r hypergraph, flower inequalities contain at most r
2 nonzero

coefficients, and running intersection inequalities contain at most 2(r − 1)
nonzero coefficients.

• For β-acyclic hypergraphs, PmG may contain dense facet-defining inequalities
with θ(|E|) nonzero coefficients.

• In practice, we almost always have r ≪ |E|.
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Example

b b
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b

b

... bb

b

b

...

• Let n ≥ 2 and consider the β-acyclic hypergraph G = (V,E) with V =
⋃

i∈[n] V
i, E = H ∪

⋃

i∈[n]E
i, where V 1 = {v13, v

1
4, v

1
7, v

1
8}, V

i = {vi1, · · · , v
i
8}

for all i ∈ [n− 1] \ {1}, V n = {vn1 , v
n
2 , v

n
5 , v

n
6 },

H =
{

{vi3, v
i
4, v

i+1
1 , v

i+1
2 }, i ∈ [n − 1]

}

E
1
=

{

{v13, v
1
4, v

1
7}, {v

1
3, v

1
4, v

1
8}, V

1
}

E
i
=

{

{vi1, v
i
2, v

i
5}, {v

i
1, v

i
2, v

i
6}, {v

i
3, v

i
4, v

i
7}, {v

i
3, v

i
4, v

i
8}, V

i
}

, ∀i ∈ [n − 1] \ {1}

E
n
=

{

{vn1 , v
n
2 , v

n
5 }, {v

n
1 , v

n
2 , v

n
6 }, V

n
}

.

• The following inequality containing |E| nonzero coefficients defines a facet of
Pm(G):

−
∑

i∈[n]

zV i −
∑

e∈H

ze +
∑

i∈[n]

∑

e∈Ei\{V i}

ze ≤ 2n− 3.
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The complete edge relaxation

• Let G = (V,E) be a hypergraph and let Ē ⊆ E the set of maximal edges of
G. For each ē ∈ Ē, let Gē be the complete hypergraph with the node set ē.
We define the complete edge relaxation of Pm(G), denoted by Pm

CE(G), as
the polytope obtained by putting together the descriptions of Pm(G

ē) for all
ē ∈ Ē.

• The edge complete relaxation is stronger than the running intersection relaxation
which in turn is stronger than the flower relaxation.

• Theorem: Pm(G) = Pm
CE(G) if and only if G is an α-acyclic hypergraph.
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Numerical Experiments

• We characterize each problem by its degree (d), number of variables (n),
number of constraints (q), and density (ν).

• Polynomial problems of degree 3 with

(n, ν) ∈ {(10, 0.75), (15, 0.25), (15, 0.15), (20, 0.1), (20, 0.05)},

and multilinear problems of degree 3 with

(n, ν) ∈ {(10, 1.0), (15, 0.5), (20, 0.15), (20, 0.1), (25, 0.05), (30, 0.02)}.

• Polynomial problems of degree 4 with

(n, ν) ∈ {(10, 0.25), (10, 0.15), (15, 0.05), (15, 0.02), (20, 0.01)},

and multilinear problems of degree 4 with

(n, ν) ∈ {(10, 1.0), (15, 0.15), (20, 0.02), (20, 0.01), , (25, 0.01), (25, 0.005)}.

• In both sets, we let q ∈ {0, n/5, n/2, n}. For each combination, 5 random
instance are generated.

• Relative/absolute optimality tolerance = 10−6 and time limit = 500s.
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220 polynomial optimization problems of degree three
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• Average reductions of 60% in CPU time, 78% in number of nodes, and
70% in maximum number of nodes in memory.
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220 polynomial optimization problems of degree four
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• Average reductions of 43% in CPU time, 76% in number of nodes, and
72% in maximum number of nodes in memory.
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Numerical Experiments – computer vision instances

• The purpose of image restoration is to estimate the original image from the
degraded data. An image is modeled as a l × h matrix where each binary
element xij represents a pixel.

• The image restoration problem is defined as the objective function f(x) =
H(x) + L(x) to be minimized, where H(x) is linear and models similarity
between the input blurred image and the output, L(x) is a multilinear function
of degree four and models smoothness.

• Test set taken from [CramaRodrigez16] with images sizes {10×10}, {10×15},
{15× 15}.

Effect of adding cuts CPU time Iterations Nodes

Better by a factor at least 2 17 (38%) 10 (23%) 10 (23%)

Between 30% and 100% better 13 (30%) 0 (0%) 0 (0%)
Difference smaller than 30% 14 (32%) 34 (77%) 34 (77%)

Between 30% and 100% worse 0 (0%) 0 (0%) 0 (0%)
Worse by a factor of at least 2 0 (0%) 0 (0%) 0 (0%)

• Average reductions of 63% in CPU time, 42% in number of iterations,
and 30% in maximum number of nodes in memory.
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Summary of the first lecture

• We define the multilinear set as the feasible region of a linearized binary
polynomial optimization problem and we define the multilinear polytope as the
convex hull of the multilinear set.

• We represent multilinear sets/polytopes by hypergraphs.

• Acyclic hypergraphs in increasing degree of generality:

Berge− acyclic ⊂ γ −acyclic ⊂ β −acyclic ⊂ α −acyclic

• The complexity of facial structure of the multilinear polytope is closely related
to the acyclicity degree of the corresponding hypergraph

• Optimizing a linear function over the multilinear polytope of α-acyclic
hypergraphs is NP-hard in general; however if the rank is bounded, then
the multilinear polytope admits a polynomial-size extended formulation with at
most 2r|V | variables and inequalities.

• The multilinear polytope of β-acyclic hypergraphs admits a polynomial-size
extended formulation with at most r|V |+ |E| variables and inequalities.
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Summary of the first lecture

• In the original space:

– The standard linearization is the multilinear polytope if and only if the
hypergraph is Berg-acyclic.

– The flower relaxation is the multilinear polytope if and only if the hypergraph
is γ-acyclic. May have exponentially many facets.

– We do not have a characterizaton of the multilinear polytope of β-acyclic
hypergraphs in the original space.

• The complete edge relaxation is the multilinear polytope if and only if the
hypergraph is α-acyclic. Has at most 2r|V | variables and inequalities.

42



Beyond hypergraph acyclicity

• We present a new framework that

– unifies all prior results on the existence of polynomial-size extended
formulations, and

– provides polynomial-size extended formulations for the multilinear polytope
of hypergraphs with β-cycles
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Binary polynomial optimization

• Binary polynomial optimization is the problem of maximizing a multivariate
polynomial function over the set of binary points.

• Based on the encoding of the polynomial function, we obtain two
popular optimization problems: multilinear optimization and pseudo-Boolean
optimization.

• With any G = (V,E), and c ∈ RV ∪E, we associate the multilinear optimization
problem:

max
∑

v∈V

cvzv +
∑

e∈E

ce
∏

v∈e

zv (BPOm)

s.t. zv ∈ {0, 1} ∀v ∈ V.
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Signed hypergraphs

• A signed hypergraph H as a pair (V, S), where V is a finite set of nodes and
S is a set of signed edges.

• A signed edge s ∈ S is a pair (e, ηs), where e is a subset of V of cardinality at
least two, and ηs is a map that assigns to each v ∈ e a sign ηs(v) ∈ {−1,+1}.

• The underlying edge of a signed edge s = (e, ηs) is e.

• Two signed edges s = (e, ηs), s
′ = (e′, ηs′) ∈ S are parallel if e = e′, and they

are identical if e = e′ and ηs = ηs′.

• We consider signed hypergraphs with no identical signed edges but often with
parallel signed edges.
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Pseudo-Boolean optimization

• With any signed hypergraph H = (V, S), and cost vector c ∈ RV ∪S, we
associate the pseudo-Boolean optimization problem:

max
∑

v∈V

cvzv +
∑

s∈S

cs
∏

v∈s

σs(zv) (BPOpB)

s.t. z ∈ {0, 1}V ,

where

σs(zv) :=

{

zv if ηs(v) = +1

1− zv if ηs(v) = −1.

• Define zs :=
∏

v∈s σs(zv) for all s ∈ S:

max
∑

v∈V

cvzv +
∑

s∈S

cszs, (ℓBPOpB)

s.t. zs =
∏

v∈s

σs(zv), ∀s ∈ S

zv ∈ {0, 1}, ∀v ∈ V .
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Pseudo-Boolean sets and polytopes

• We define the pseudo-Boolean set of the signed hypergraph H = (V, S), as:

SpB(H) :=
{

z ∈ {0, 1}V ∪S : zs =
∏

v∈s

σs(zv), ∀s ∈ S
}

,

and we refer to its convex hull as the pseudo-Boolean polytope PpB(H).

• If ηs(v) = +1 for all v ∈ s and all s ∈ S, then the pseudo-Boolean set/polytope
coincides with the multilinear set/polytope.

• Unlike the multilinear polytope, the pseudo-Boolean polytope is NOT full
dimensional.

• Let s1 = {1−, 2+, 3+}, s2 = {1+, 2+, 3+}, s3 = {2+, 3+}, then

zs3 = zs1 + zs2.

• Note that zs1 = (1− z1)z2z3, zs2 = z1z2z3 and zs3 = z2z3.
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The underlying hypergraph vs the multilinear hypergraph

• The underlying hypergraph of a signed hypergraphH is the hypergraph obtained
from H by ignoring signs and dropping parallel edges.

• The pseudo-Boolean optimization problem over a signed hypergraphH = (V, S)
can be reformulated as a multilinear optimization problem over a hypergraph,
which we call the multilinear hypergraph mh(H) of H.

• Let the underlying hypergraph of H be β-acyclic; then the multilinear
hypergraph of H may contain many β-cycles.

zs = (1− z1)(1− z2)(1− z3)
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The pseudo-Boolean polytope versus the multilinear polytope

• Recall that the multilinear polytope is a special case of the pseudo-Boolean
polytope.

• Let H = (V, S) be a signed hypergraph. If we have the description of the
multilinear polytope of the multilinear hypergraph mh(H), then we can obtain
a description of the pseudo-Boolean polytope PpB(H) using:

∏

v∈s

σs(zv) =
∑

e∈E

de
∏

v∈e

zv + d0, ∀s ∈ S.

• Then an extended formulation for PpB(H) is given by the description of Pm(G),
where G := mh(H) together with the following equations:

zs =
∑

e∈E

deze + d0, ∀s ∈ S.

• However, Pm(G) with G = mh(H) may contain exponentially many more
variables than PpB(H).
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The recursive inflate and decompose framework

• Main ingredients:

1. A sufficient condition for decomposability of pseudo-Boolean polytopes.

2. A polynomial-size extended formulation for the pseudo-Boolean polytope
of pointed signed hypergraphs, which appears as a result of applying the
decomposition technique.

3. The inflation operation that we use to transform a large class of signed
hypergraphs to those for which our results of Parts 1 and 2 are applicable.
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Decomposability of pseudo-Boolean polytopes

• Consider a signed hypergraphH = (V, S), let V1, V2 ⊆ V such that V = V1∪V2,
let S1 ⊆ {s ∈ S : s ⊆ V1}, S2 ⊆ {s ∈ S : s ⊆ V2} such that S = S1 ∪ S2. Let
H1 := (V1, S1) and H2 := (V2, S2).

• We say PpB(H) is decomposable into PpB(H1) and PpB(H2), if the system
comprised of a description of PpB(H1) and a description of PpB(H2), is a
description of PpB(H).

• Theorem: Assume the underlying hypergraph of H has a nest point v. Let
s1 ⊆ s2 ⊆ · · · ⊆ sk be the signed edges of H containing v, and assume S
contains si − v for all i ∈ [k]. Then PpB(H) is decomposable into PpB(H1)
and PpB(H2), where H1 := (V1, Sv ∪ Pv), V1 is the underlying edge of sk,
Sv := {s1, . . . , sk}, Pv := {si − v : |si − v| ≥ 2, i ∈ [k]}, and H2 := H − v.

b

b

b b

b b

b

b b

G G1

b

b b

b

G2
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The pseudo-Boolean polytope of pointed signed hypergraphs

• Consider a signed hypergraph H = (V, S) and let v ∈ V be a nest point of
the underlying hypergraph of H. Denote by Sv the set of all signed edges in
S containing v. Define Pv := {s − v : s ∈ Sv, |s| ≥ 3}. We say that H s a
pointed signed hypergraph if V coincides with the underlying edge of the signed
edge of maximum cardinality in Sv and S = Sv ∪ Pv.

• Theorem: Let H = (V, S) be a pointed signed hypergraph. Then PpB(H) has
a polynomial-size extended formulation with at most 2|V |(|S| + 1) variables
and at most 4(|S|(|V | − 2) + |V |) inequalities. Moreover, all coefficients and
right-hand side constants in the system defining PpB(H) are 0,±1.

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is β-acyclic. Then the pseudo-Boolean polytope has a polynomial-
size extended formulation with at most O(r|S||V |) variables and inequalities.
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Inflation of signed edges

• Let H = (V, S) be a signed hypergraph, let s ∈ S, and let e ⊆ V such that
s ⊂ e. let I(s, e) be the set of all possible signed edges s′ parallel to e such
that ηs(v) = ηs′(v) for every v ∈ s. Then H ′ = (V, S′) is obtained from H by
inflating s to e if S′ = S ∪ I(s, e) \ {s}.

• Theorem: Let H ′ = (V, S′) be obtained from H by inflating s to e. Then an
extended formulation of PpB(H) can be obtained by an extended formulation
of PpB(H

′) and

zs =
∑

s′∈I(s,e)

zs′.

If PpB(H
′) has a polynomial-size extended formulation and |e| − |s| =

O(log poly(|V |, |S|)), then PpB(H) has a polynomial-size extended formulation
as well.

1

2 3

1

2 3

s1 = {v+1 , v
+
2 }, s2 = {v+1 , v

+
3 }, s3 = {v+3 , v

+
2 }

s4 = {v−1 , v
+
2 , v

+
3 }, s5 = {v+1 , v

+
2 , v

+
3 }

zs3 = zs4 + zs5
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Inflation of signed edges
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Applications of inflation

• Consider a signed hypergraph H = (V, S). Suppose that each s ∈ S contains
at least |V | − k nodes. Then the pseudo-Boolean polytope has an extended
formulation with O(2k|V ||S|) variables and inequalities.
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• Consider a signed hypergraph H = (V, S) of rank r. For each s ∈ S, among
all maximal signed edges of H containing s, denote by fs one with minimum
cardinality. Let k be such that |fs| − |s| ≤ k for all s ∈ S. Let S̄ denote the
set of maximal signed edges of H. If the underlying hypergraph of (V, S̄) is
β-acyclic, then the pseudo-Boolean polytope has an extended formulation with
O(r2k|V ||S|) variables and inequalities.
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The Recursive inflate-and-decompose (RID) framework

• Input: A signed hypergraph H = (V, S), Output: An extended formulation for
PpB(H).

• Step 0. Set H(0) := H, i := 0.

• Step 1. If we can obtain H̄(i) from H(i) via a number of inflation operations,
such that a suitable extended formulation for PpB(H̄

(i)) is available, then we
are done. Otherwise, go to Step 2.

• Step 2. Choose a node v̄ of H(i). If v̄ is a nest point of the underlying
hypergraph of H(i), then set H̄(i) := H(i) and go to Step 3. Otherwise,
construct H̄(i) from H(i) via inflation operations, such that v is a nest point of
the underlying hypergraph of H̄(i). It suffices to find an extended formulation
for PpB(H̄

(i)).

• Step 3. Decompose PpB(H̄
(i)) into PpB(H̄

(i)
1 ) and PpB(H̄

(i)
2 ), where H̄

(i)
1

denotes the signed hypergraph containing node v̄. Since we have an extended

formulation for PpB(H̄
(i)
1 ), it suffices to find an extended formulation for

PpB(H̄
(i)
2 ). Set H(i+1) := H̄

(i)
2 , increment i by one, and go to Step 1.
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The Recursive inflate-and-decompose (RID) framework

• RID provides a polynomial-size extended formulation for PpB(H) if the following
conditions are satisfied:

– In Step 1, the algorithm should terminate, only if a polynomial-size extended
formulation for PpB(H̄

(i)) is available.
– The total number of new edges introduced as a result of inflation operations

in Steps 1 and 2 is upper bounded by a polynomial in |V |, |S|.

• A simple way to obtain a nest point in Step 2 is to inflate each signed edge
containing v̄ to the union of all signed edges containing v̄.
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α-acyclic hypergraphs with log-poly ranks

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is α-acyclic. Then PpB(H) has an extended formulation with at
most O(3r|V |) variables and inequalities.

• A node v ∈ V is an α-leaf if the set of edges containing v has a maximal
element for inclusion.

• A hypergraph is α-acyclic iff we can recursively remove α-leaves till obtaining
an empty set.
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α-acyclic hypergraphs with log-poly ranks

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is α-acyclic. Then PpB(H) has an extended formulation with at
most O(3r|V |) variables and inequalities.
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α-acyclic hypergraphs with log-poly ranks

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is α-acyclic. Then PpB(H) has an extended formulation with at
most O(3r|V |) variables and inequalities.
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α-acyclic hypergraphs with log-poly ranks

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is α-acyclic. Then PpB(H) has an extended formulation with at
most O(3r|V |) variables and inequalities.
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Nest-sets

• Let G = (V,E) be a hypergraph and let N ⊆ V . We say that N is a nest-set
of G, if the set

{e \N : e ∈ E, e ∩N 6= ∅},

is totally ordered with respect to inclusion. If |N | = 1, then N contains a nest
point of G (Lanzinger 2023).

• Let N1 · · ·Nt for some t ≥ 1 be pairwise disjoint subsets of V such that
∪i∈[t]Ni = V . We say that N = N1, · · · , Nt is a nest set elimination order of
G, if N1 is a nest set of G, N2 is a nest-set of G−N1, and so on.

• Given a nest set elimination order N of G, the nest-set width of this elimination
order nswN (G), is the maximum cardinality of any element in N .

• The nest-set width of G nsw(G), is the minimum value of nswN (G) over all
nest set elimination orders N of G.

• nsw(G) = 1, if and only if G is a β-acyclic hypergraph.

62



Nest-sets, nest-set width, and nest-set gap

• Let G = (V,E), and let V ′ ⊆ V ; we define the gap of G induced by V ′ as

gap(G, V ′) := max
{

|V ′| − |e ∩ V ′| : e ∈ E, e ∩ V ′ 6= ∅
}

.

• Given a nest-set elimination order N of G, we define nest-set gap of N as

nsgN (G) := max
{

gap(G−N1 − · · · −Ni−1, Ni) : i ∈ [t]
}

,

• We then have
nsgN (G) ≤ nswN (G)− 1.

• The nest-set gap of G nsg(G), as the minimum value of nsgN (G) over all
nest-set elimination orders N of G.

• Example: Consider a hypergraph G = (V,E) whose edge set E consists of all
subsets of V of cardinality |V | − 1. Letting N = V \ {v̄}, {v̄} for some v̄ ∈ V ,
we have nsw(G) = |V | − 1, while nsg(G) = 1.
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Nest-set width and nest-set gap
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A hypergraph G with nsw(G) = 2 and nsg(G) = 1.
N = {8}, {7}, {6}, {5}, {4}, {12, 13}, {14}, {9, 10}, {11}, {2, 3}, {1}. G contains β-cycles of length

three.
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A hypergraph G with nsw(G) = 2 and nsg(G) = 1.
N = {1, 2}, {3}, {4}, {5}, {6, 7}, {8}, {9}, {10}, {11, 12}, {13}. G contains β-cycles of length three.
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Nest-set width and nest-set gap

• If G has a β-cycle of length ℓ, then nsw(G) ≥ ℓ− 1.

• However, the converse does not hold.
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This graph contains cycles of length four only, however, its nest-set width is |V | − 1.

• Question: Is it possible to give a characterization of nest-set width in terms of
the size of the β-cycles in the hypergraph?
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Hypergraphs with small nest-set gaps

• Deciding if nsw(G) ≤ k for any integer k is NP-complete. However, when
parameterized by k, this problem is fixed-parameter tractable (Lanzinger 2023):

• There exists a 2O(k2)poly(|V |, |E|) time algorithm that takes as input
hypergraph G = (V,E) and integer k ≥ 1 and returns a nest set elimination N
with nswN (G) = k if one exists, or rejects otherwise.

• Question: What is the complexity of checking whether the nest-set gap of a
hypergraph is bounded?

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph G = (V,E) satisfies nsg(G) ≤ k. Then the pseudo-Boolean
polytope PpB(H) has an extended formulation with O(r2k|V ||S|) variables and
inequalities. In particular, if k ∈ O(log poly(|V |, |S|)), then PpB(H) has a
polynomial-size extended formulation. Moreover, all coefficients and right-hand
side constants in the system defining PpB(H) are 0,±1.
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph G = (V,E) satisfies nsg(G) ≤ k. Then the pseudo-Boolean
polytope PpB(H) has an extended formulation with O(r2k|V ||S|) variables and
inequalities.
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean
polytope PpB(H) has an extended formulation with O(r2k|V ||S|) variables and
inequalities.
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean
polytope PpB(H) has an extended formulation with O(r2k|V ||S|) variables and
inequalities.
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean
polytope PpB(H) has an extended formulation with O(r2k|V |2|S|) variables
and inequalities.
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The extension complexity of the Boolean quadric polytope

• The extension complexity of a polytope is defined as the minimum number of
inequalities and equalities in an extended formulation of the polytope.

• Theorem: There exists a universal constant δ > 1
20 such that, for every graph

G with n nodes, we have xc(QP(G)) ≥ 2Ω((tw(G))δ+logn) (Fiorini et al, 2019).

• Corollary: For any hypergraph G = (V,E), denote by G′ the graph (V,E′),
where E′ contains all edges in E of cardinality two. Then there exists a
universal constant δ > 1

20 such that for every hypergraph G with n nodes, we

have xc(Pm(G)) ≥ 2Ω((tw(G′))δ+logn).

• This lower bound implies an exponential extension complexity for hypergraphs
with unbounded treewidth in which all subsets of cardinality two of each edge
are also edges of the hypergraph; i.e., tw(G) = tw(G′). However, this lower
bound can be arbitrarily weak, because tw(G′) ≪ tw(G), in general.
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The extension complexity of the pseudo-Boolean polytope

• Theorem: There exists constant δ > 1
20 such that, for every hypergraph G with

n nodes with r ∈ O(log poly(tw(G))), there exists a signed hypergraph H with

the underlying hypergraph G for which xc(PpB(H)) ≥ 2Ω((tw(G))δ+logn).

• Proof Sketch:

– Let G = (V,E), and let G′ = (V,E′) be the intersection graph of G;
tw(G′) = tw(G).

– For each edge e ∈ E′, there exists an edge g ∈ E such that e ⊆ g; denote
by g(e) one such edge of E.

– Define the signed hypergraph H̄ = (V, S̄) obtained from G′ by inflating each
edge e ∈ E′ to g(e).

– Denote by r the rank of G; we have |g(e)| ≤ r, therefore |S̄| ≤ 2r · |E′|.
– Since |E′| ≤ |V |2 and r is a log-poly function in tw(G), |S̄| is upper bounded

by a polynomial in tw(G).
– The underlying hypergraph of H̄ is a partial hypergraph of G; let H = (V, S)

be a signed hypergraph with the underlying hypergraph G such that S ⊇ S̄;
xc(PpB(H)) ≥ xc(PpB(H̄)).

– An extended formulation for QP(G′) is given by an extended formulation
for PpB(H̄) together with |E′| equalities containing |S̄| variables. Since

xc(QP(G′)) ≥ 2Ω((tw(G))δ+logn), we get xc(PpB(H̄)) ≥ 2Ω((tw(G))δ+logn).
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Open questions

• Statement 1: There exists a universal positive constant δ such that, for every
signed hypergraph H with n nodes whose rank is upper bounded by a log-poly

function in tw(H), we have xc(PpB(H)) ≥ 2Ω((tw(H))δ+logn).

• Statement 2: There exists a universal positive constant δ such that, for every
hypergraph G with n nodes whose rank is upper bounded by a log-poly function

in tw(G), we have xc(Pm(G)) ≥ 2Ω((tw(G))δ+logn).

• If Statement 1 is true, then Statement 2 is true.

• These remain open even if we let the rank to be a constant.
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