Binary polynomial optimization through a hypergraph theoretic lens

June 2025

Aida Khajavirad

Lehigh University

Joint work with: Alberto Del Pia (University of Wisconsin-Madison)

Problem definition

• Let $V = \{1, ..., n\}$, let E be a set of subsets of cardinality at least two of V. Consider an unconstrained binary polynomial optimization problem:

$$\max \sum_{e \in E} c_e \prod_{v \in e} z_v$$
(BPO)
s.t. $z_v \in \{0, 1\}, \forall v \in V$

- Problem BPO is NP-hard in general.
- Applications: Satisfiability problems (MAX-SAT), inference in higher-order graphical models, low-rank Boolean matrix/tensor factorization, ...
- Define $z_e := \prod_{v \in e} z_v$ for all $e \in E$:

$$\max \sum_{e \in E} c_e z_e, \qquad (\ell \mathsf{BPO})$$

s.t. $z_e = \prod_{v \in e} z_v, \forall e \in E$
 $z_v \in \{0, 1\}, \forall v \in V.$

Multilinear sets and polytope

• We define the multilinear set as:

$$\mathcal{S} = \left\{ z \in \{0, 1\}^{V \cup E} : z_e = \prod_{v \in e} z_v, \forall e \in E \right\}.$$

• We define the multilinear polytope as the convex hull of the multilinear set:

 $\mathcal{P}_{\rm m} = \operatorname{conv}(\mathcal{S})$

• If |e| = 2 for all $e \in E$, then the objective function of Problem (BPO) is quadratic and \mathcal{P}_{m} is the Boolean quadric polytope QP (Padberg, 89).

Hypergraph representation

 There is a bijection between multilinear sets and hypergraphs: one node v for each z_v, one edge e for each z_e, the edge e corresponding to z_e is {v : v ∈ e}

• For quadratic sets, we obtain the graph representation of QP(G) (Padberg, 89).

• The rank of G is the maximum cardinality of any edge in E.

The Boolean quadric polytope

 Replace each bilinear term z_{ij} = z_iz_j, by its convex hull over the unit hypercube and use ∩_i conv(S_i) ⊇ conv(∩_i S_i) to obtain the standard linearization, or the McCormick relaxation, of QP(G):

$$\mathsf{QP}^{\mathsf{LP}}(G) = \left\{ z : z_{ij} \ge 0, \ z_{ij} \ge z_i + z_j - 1, \ z_{ij} \le z_i, z_{ij} \le z_j, \ \forall (i,j) \in E \right\}.$$

- $QP(G) = QP_G^{LP}$ iff G is an acyclic graph (Padberg 89).
- Let $QP^{C}(G)$ be polytope obtained by adding all odd cycle inequalities to $QP^{LP}(G)$; $QP(G) = QP^{C}(G)$ iff G is a series-parallel graph (Barahona 86, Padberg 89).
- Optimizing over $QP^{LP}(G)$ and $QP^{C}(G)$ can be done in polynomial-time.
- Goal: obtaining similar results for higher degree multilinear sets in terms of easily verifiable conditions on the structure of underlying hypergraphs.

Cycles in hypergraphs

• Acyclic hypergraphs in increasing degree of generality:

Berge – acyclic $\subset \gamma$ – acyclic $\subset \beta$ – acyclic $\subset \alpha$ – acyclic

- A Berge-cycle in G of length t for some $t \ge 2$, is a sequence $C = v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ with the following properties:
 - v_1, v_2, \ldots, v_t are distinct nodes and e_1, e_2, \ldots, e_t are distinct edges of G,
 - $v_i, v_{i+1} \in e_i$ for $i = 1, \ldots, t-1$, and $v_t, v_1 \in e_t$.
- A hypergraph is Berge-acyclic iff it contains no Berge-cycles.

Berge-cycle: $C = v_1, e_{12}, v_2, e_{123}, v_1$

$\gamma\text{-acyclic hypergraphs}$

- A γ -cycle in G is a Berge-cycle $C = v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ such that $t \geq 3$, and the node v_i belongs to e_{i-1} , e_i and no other e_j , for all $i = 2, \ldots, t$.
- A hypergraph is called γ -acyclic iff it contains no γ -cycles.

No γ -cycles; Berge-cycles of length two and three.

 γ -cycle: $C = v_1, e_{12}, v_2, e_{123}, v_3, e_{13}, v_1$

A $\gamma\text{-acyclic}$ hypergraph

β -acyclic hypergraphs

- A β -cycle in G is a γ -cycle $C = v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ such that the node v_1 belongs to e_1 , e_t and no other e_j .
- A hypergraph is called β -acyclic iff it contains no β -cycles.

A $\beta\text{-acyclic}$ hypergraph

Let G = (V, E) be a hypergraph and let C = e₁, e₂, ..., e_t, e_{t+1} with e_{t+1} := e₁ for some t ≥ 3. Define s_i := e_i ∩ e_{i+1} for all i ∈ [t]. Then C is α-cycle of length t in G, if

 $(s_i \cup s_j \cup s_k) \setminus e \neq \emptyset \quad \forall 1 \le i < j < k \le \ell, \ \forall e \in E.$

• A hypergraph is called α -acyclic iff it contains no α -cycles.

Extended formulations

• When does the multilinear polytope of acyclic hypergraphs admit a polynomialsize extended formulation which can be constructed in polynomial-time?

Decomposability of multilinear sets

- Consider hypergraphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ such that $V_1 \cap V_2 \neq \emptyset$. Denote by $G_1 \cup G_2$, the hypergraph $(V_1 \cup V_2, E_1 \cup E_2)$, and by $G_1 \cap G_2$, the hypergraph $(V_1 \cap V_2, E_1 \cap E_2)$.
- Let $G := G_1 \cup G_2$. Then $\mathcal{P}_m(G)$ is decomposable into $\mathcal{P}_m(G_1)$ and $\mathcal{P}_m(G_2)$, if

$$\mathcal{P}_{\mathrm{m}}(G) = \mathcal{P}_{\mathrm{m}}(G_1) \cap \mathcal{P}_{\mathrm{m}}(G_2),$$

i.e., the system comprised a description of $\mathcal{P}_m(G_1)$ and a description of $\mathcal{P}_m(G_2)$, is a description of $\mathcal{P}_m(G)$.

- A hypergraph G = (V, E) is complete if all subsets of V of cardinality at least two are in E.
- Given $V' \subset V$, the section hypergraph of G induced by V' is G' = (V', E'), where $E' = \{e \in E : e \subseteq V'\}$.
- Theorem: Let G_1, G_2 be section hypergraphs of G such that $G_1 \cup G_2 = G$ and $G_1 \cap G_2$ is a complete hypergraph. Then the set $\mathcal{P}_m(G)$ is decomposable into $\mathcal{P}_m(G_1)$ and $\mathcal{P}_m(G_2)$.

• Acyclic hypergraphs in increasing degree of generality:

Berge – acyclic $\subset \gamma$ – acyclic $\subset \beta$ – acyclic $\subset \alpha$ – acyclic

- Optimizing over the multilinear polytope of α -acyclic hypergraphs is NP-hard in general.
- Theorem: The multilinear polytope of an α -acyclic hypergraph of rank r has an extended formulation with at most $O(2^r|V|)$ variables and inequalities.
- If r is upper bounded by the log of a polynomial in the size of the hypergraph, then the multilinear polytope has a polynomial-size extended formulation.
- Equivalent to assuming bounded treewidth for the intersection graph: Wainwright-Jordan 2004, Laurent 2009, Bienstock-Munoz 2018.

- A β-cycle of length q for q ≥ 3 in G is a sequence v₁, e₁, v₂, e₂, ..., v_q, e_q, v₁ such that v₁, v₂, ..., v_q are distinct nodes, e₁, e₂, ..., e_q are distinct edges, and v_i belongs to e_{i-1}, e_i and no other edges for all i = 1, ..., q.
- Theorem: The multilinear polytope of β -acyclic hypergraphs has a polynomialsize extended formulation with at most (r-1)|V| + |E| variables ((r-2)|V|additional variables) and at most (3r-4)|V| + 4|E| inequalities.
- The defining inequalities are very sparse: at most four variables with non-zero coefficients. All coefficients are ± 1 and all right-hand sides are 0/1.

Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-size extended formulation with at most (r - 1)|V| + |E| variables ((r - 2)|V| additional variables) and at most (3r - 4)|V| + 4|E| inequalities (ADP and AK, 2023).

- A node is a nest point (β -leaf) if the edges containing it are totally ordered.
- A hypergraph is β-acyclic iff we can recursively remove nest points till obtaining an empty set.

Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-size extended formulation with at most (r - 1)|V| + |E| variables ((r - 2)|V| additional variables) and at most (3r - 4)|V| + 4|E| inequalities (ADP and AK, 2023).

Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-size extended formulation with at most (r - 1)|V| + |E| variables ((r - 2)|V| additional variables) and at most (3r - 4)|V| + 4|E| inequalities (ADP and AK, 2023).

• The multilinear polytope of a pointed hypergraph G = (V, E) consists of 5|V| + 2 inequalities.

The original space

- Convex hull characterizations and valid inequalities for the multilinear polytope in the original space
- Strong LP relaxations for general mixed-integer polynomial optimization problems

Standard linearization of multilinear sets

• Replace each multilinear term $z_e = \prod_{v \in e} z_v$, by its convex hull over the unit hypercube and use $\bigcap_i \operatorname{conv}(\mathcal{S}_i) \supseteq \operatorname{conv}(\bigcap_i \mathcal{S}_i)$ to obtain the standard linearization $\mathcal{P}_m^{LP}(G)$ of $\mathcal{S}(G)$:

$$\mathcal{P}_{\mathbf{m}}^{\mathsf{LP}}(G) = \left\{ z : \quad z_{v} \leq 1, \ \forall v \in V, z_{e} \geq 0, \ z_{e} \geq \sum_{v \in e} z_{v} - |e| + 1, \ \forall e \in E, \\ z_{e} \leq z_{v}, \forall v \in e, \ \forall e \in E \right\}.$$

- Recall that $QP(G) = QP^{LP}(G)$ iff G is an acyclic graph (Padberg 89).
- Theorem: $\mathcal{P}_m^{LP}(G) = \mathcal{P}_m(G)$ if and only if G is a Berge-acyclic hypergraph.

The standard linearization vs. the convex hull relaxation

- Theorem: $\mathcal{P}_m^{LP}(G) = \mathcal{P}_m(G)$ if and only if G is a Berge-acyclic hypergraph.
- Proof sketch:
 - If G has a Berge-cycle of length two; i.e., $E(C) = \{e_1, e_2\}$ with $|e_1 \cap e_2| \ge 2$, the following is valid for S_G :

$$\sum_{v \in e_2 \setminus e_1} z_v + z_{e_1} - z_{e_2} \le |e_2 \setminus e_1|$$

Consider $\tilde{z}_v = 1$ for all $v \in e_2 \setminus e_1$, $\tilde{z}_v = 1/2$ for all $v \in e_1$, $\tilde{z}_v = 0$ for the remaining nodes in G, $\tilde{z}_{e_1} = 1/2$, $\tilde{z}_{e_2} = 0$, $\tilde{z}_e = 1$ for all $e \subseteq e_2 \setminus e_1$, $\tilde{z}_e = 0$ for all $e \not\subseteq e_1 \cup e_2$ and $\tilde{z}_e = 1/2$ for all remaining edges in G. $\tilde{z} \in \mathcal{P}_m^{LP}(G)$. Substituting \tilde{z} in the above inequality yields $|e_2 \setminus e_1| + 1/2 - 0 \nleq |e_2 \setminus e_1|$. - Let C be a Berge-cycle of minimum length t, where $t \ge 3$. Since $|e_i \cap e_j| \le 1$ for all $e_i, e_j \in E$, the subhypergraph $G_{V(C)}$ is a graph consisting of a chordless cycle. To show $\mathcal{P}_m(G) \subset \mathcal{P}_m^{LP}(G)$ is suffices to show that $\mathcal{P}_m(G_{V(C)}) \subset \mathcal{P}_m^{LP}(G_{V(C)})$. The polytope $\mathcal{P}_m(G_{V(C)})$ is integral while $\mathcal{P}_m^{LP}(G_{V(C)})$ is not integral.

 \Rightarrow if G contains a Berge-cycle, we have $\mathcal{P}_{\mathrm{m}}(G) \subset \mathcal{P}_{\mathrm{m}}^{\mathsf{LP}}(G)$

The standard linearization vs. the convex hull relaxation

Suppose that G is a Berge-acyclic hypergraph. Then there exists an edge ẽ of G such that ẽ ∩ {v : ∃e ∈ E(G) \ ẽ, v ∈ e} = {ṽ}, for some ṽ ∈ V(G).

 \Rightarrow if G is Berge-acyclic, we have $\mathcal{P}_{\mathrm{m}}(G) = \mathcal{P}_{\mathrm{m}}^{\mathrm{LP}}(G)$

Flower inequalities

• Let $e_0 \in E$ and let e_k , $k \in K$, be the set of all edges adjacent to e_0 . Let $T \subseteq K$ such that

$$\left| (e_0 \cap e_i) \setminus \bigcup_{j \in T \setminus \{i\}} (e_0 \cap e_j) \right| \ge 2, \quad \forall i \in T.$$

• The flower inequality centered at e_0 with neighbors e_k , $k \in T$ is:

$$\sum_{v \in e_0 \setminus \bigcup_{k \in T} e_k} z_v + \sum_{k \in T} z_{e_k} - z_{e_0} \le |e_0 \setminus \bigcup_{k \in T} e_k| + |T| - 1.$$

$$\begin{aligned} z_1 + z_4 + z_5 + z_6 + z_{e_1} - z_{e_0} &\leq 4 \\ z_1 + z_5 + z_6 + z_{e_2} - z_{e_0} &\leq 3, \\ z_1 + z_2 + z_3 + z_4 + z_{e_3} - z_{e_0} &\leq 4, \\ z_1 + z_4 + z_{e_1} + z_{e_3} - z_{e_0} &\leq 3, \ z_1 + z_{e_2} + z_{e_3} - z_{e_0} &\leq 2 \end{aligned}$$

• The flower relaxation $\mathcal{P}_m{}^F(G)$ is obtained by adding the system of flower inequalities centered at each edge of G to $\mathcal{P}_m{}^{LP}(G)$.

The flower relaxation vs. the convex hull relaxation

- Theorem: $\mathcal{P}_{m}^{F}(G) = \mathcal{P}_{m}(G)$ if and only if G is a γ -acyclic hypergraph.
- Given a rank- $r \gamma$ -acyclic hypergraph G = (V, E), the separation problem over all flower inequalities can be solved in $O(r|E|^2(|V| + |E|))$ operations.
- The separation problem for flower inequalities over general hypergraphs is NP-hard (reduction from 3D matching).
- The separation problem for flower inequalities and running intersection inequalities for fixed-rank hypergraphs can be solved in polynomial-time. More precisely, in $O(|E|(r2^r|E| + 2^{r^2}r^3))$ operations.

Flower relaxation vs. recursive McCormick relaxations

- Recursive McCormick (RMC) relaxations are among the most popular convexification techniques for binary polynomial optimization.
- Write each multilinear term $z_e = \prod_{v \in e} z_v$ in a lifted space of variables as a collection of bilinear equations $z_{I \cup J} = z_I z_J$.
- Example: consider $z_{1234} = z_1 z_2 z_3 z_4$, then we have $z_{12} = z_1 z_2$, $z_{34} = z_3 z_4$, $z_{1234} = z_{12} z_{34}$ or $z_{1234} = z_1 z_{234}$, $z_{234} = z_2 z_{34}$ and $z_{34} = z_3 z_4$.
- The quality and the size of these relaxations depend on the recursive sequence and finding an optimal sequence amounts to solving a difficult combinatorial optimization problem.
- Theorem: Let G be a hypergraph and let $\mathcal{P}_m^{RMC}(G)$ denote an RMC relaxation of $\mathcal{S}(G)$. Then $\mathcal{P}_m^{F}(G) \subseteq \mathcal{P}_m^{RMC}(G)$.

Running intersection inequalities

• A multiset F of subsets of a finite set V has the running intersection property if there exists an ordering p_1, p_2, \ldots, p_m of the sets in F such that

$$\forall k \in \{2, \dots, m\}, \exists j < k : N(p_k) := p_k \cap \left(\bigcup_{i < k} p_i\right) \subseteq p_j.$$

We refer to such an ordering as a running intersection ordering of F.

• Let e_0 and e_k , $k \in K$, be a collection of edges adjacent to e_0 such that $\tilde{E} := \{e_0 \cap e_k : k \in K\}$ has the running intersection property. Consider a running intersection ordering of \tilde{E} . For each $k \in K$, let $w_k \subseteq N(e_0 \cap e_k)$ such that $w_k \in \emptyset \cup V \cup E$. We define a running intersection inequality centered at e_0 with neighbours e_k , $k \in K$ as

$$-\sum_{k \in K} z_{w_k} + \sum_{v \in e_0 \setminus \bigcup_{k \in K} e_k} z_v + \sum_{k \in K} z_{e_k} - z_{e_0} \le \omega - 1,$$

where we define $z_{\emptyset} = 0$, and $\omega = \left| \{k \in K : w_k = \emptyset\} \right| + \left| \{e_0 \setminus \bigcup_{k \in K} e_k\} \right|.$

Running intersection inequalities

• Letting $w_k = \emptyset$ for all $k \in K$, running intersection inequalities simplify to flower inequalities.

 $\begin{aligned} -z_{v_5} - z_{v_7} - z_{v_8} + z_{v_1} + z_{v_2} + z_{e_2} + z_{e_3} + z_{e_6} + z_{e_7} + z_{e_8} - z_{e_0} &\leq 3, \\ -z_{v_5} - z_{v_7} - z_{v_9} + z_{v_1} + z_{v_2} + z_{e_2} + z_{e_3} + z_{e_6} + z_{e_7} + z_{e_8} - z_{e_0} &\leq 3, \\ -2z_{v_4} + z_{v_2} + z_{v_3} + z_{e_1} + z_{e_2} + z_{e_4} + z_{e_5} + z_{e_8} - z_{e_0} &\leq 4 \end{aligned}$

• Any running intersection ordering of \tilde{E} leads to the same system of running intersection inequalities centered at e_0 with neighbors e_k , $k \in K$.

The running intersection relaxation

- The running intersection relaxation $\mathcal{P}_m^{RI}(G)$ is the polytope obtained by adding to $\mathcal{P}_m^{LP}(G)$ all possible running intersection inequalities for $\mathcal{S}(G)$.
- If $\mathcal{P}_{\mathrm{m}}(G)$ is not β -acyclic, then $\mathcal{P}_{\mathrm{m}}(G) \subset \mathcal{P}_{\mathrm{m}}^{\mathrm{RI}}(G)$.
- Let G be a β -acyclic hypergraph. Suppose that there exist no three edges $e_0, e_1, e_2 \in E$ such that $|e_0 \cap e_1 \cap e_2| \geq 2$, $(e_0 \cap e_1) \setminus e_2 \neq \emptyset$, and $(e_0 \cap e_2) \setminus e_1 \neq \emptyset$. Then $\mathcal{P}_m(G) = \mathcal{P}_m^{RI}(G)$.

What about the multilinear polytope of β -acyclic hypergraphs?

- From a computational perspective, sparsity is key to the effectiveness of cutting planes in a branch-and-cut framework.
- For a rank r hypergraph, flower inequalities contain at most $\frac{r}{2}$ nonzero coefficients, and running intersection inequalities contain at most 2(r-1) nonzero coefficients.
- For β -acyclic hypergraphs, \mathcal{P}_{mG} may contain dense facet-defining inequalities with $\theta(|E|)$ nonzero coefficients.
- In practice, we almost always have $r \ll |E|$.

Example

• Let $n \ge 2$ and consider the β -acyclic hypergraph G = (V, E) with $V = \bigcup_{i \in [n]} V^i$, $E = H \cup \bigcup_{i \in [n]} E^i$, where $V^1 = \{v_3^1, v_4^1, v_7^1, v_8^1\}$, $V^i = \{v_1^i, \cdots, v_8^i\}$ for all $i \in [n-1] \setminus \{1\}$, $V^n = \{v_1^n, v_2^n, v_5^n, v_6^n\}$,

$$\begin{split} H &= \left\{ \{v_3^i, v_4^i, v_1^{i+1}, v_2^{i+1}\}, \ i \in [n-1] \right\} \\ E^1 &= \left\{ \{v_3^1, v_4^1, v_7^1\}, \{v_3^1, v_4^1, v_8^1\}, V^1 \right\} \\ E^i &= \left\{ \{v_1^i, v_2^i, v_5^i\}, \{v_1^i, v_2^i, v_6^i\}, \{v_3^i, v_4^i, v_7^i\}, \{v_3^i, v_4^i, v_8^i\}, V^i \right\}, \quad \forall i \in [n-1] \setminus \{1\} \\ E^n &= \left\{ \{v_1^n, v_2^n, v_5^n\}, \{v_1^n, v_2^n, v_6^n\}, V^n \right\}. \end{split}$$

• The following inequality containing |E| nonzero coefficients defines a facet of $\mathcal{P}_{\rm m}(G)$:

$$-\sum_{i\in[n]} z_{V^i} - \sum_{e\in H} z_e + \sum_{i\in[n]} \sum_{e\in E^i\setminus\{V^i\}} z_e \le 2n-3.$$
The complete edge relaxation

- Let G = (V, E) be a hypergraph and let E
 ⊆ E the set of maximal edges of G. For each e
 ∈ E
 , let G<sup>e
 be the complete hypergraph with the node set e
 .
 We define the complete edge relaxation of P_m(G), denoted by P_m^{CE}(G), as the polytope obtained by putting together the descriptions of P_m(G<sup>e
)</sup> for all e
 ∈ E
 .
 </sup>
- The edge complete relaxation is stronger than the running intersection relaxation which in turn is stronger than the flower relaxation.
- Theorem: $\mathcal{P}_{m}(G) = \mathcal{P}_{m}^{CE}(G)$ if and only if G is an α -acyclic hypergraph.

Numerical Experiments

- We characterize each problem by its degree (d), number of variables (n), number of constraints (q), and density (ν) .
- Polynomial problems of degree 3 with

 $(n,\nu) \in \{(10,0.75), (15,0.25), (15,0.15), (20,0.1), (20,0.05)\},\$

and multilinear problems of degree 3 with

 $(n,\nu) \in \{(10,1.0), (15,0.5), (20,0.15), (20,0.1), (25,0.05), (30,0.02)\}.$

• Polynomial problems of degree 4 with

 $(n, \nu) \in \{(10, 0.25), (10, 0.15), (15, 0.05), (15, 0.02), (20, 0.01)\},\$

and multilinear problems of degree 4 with

 $(n,\nu) \in \{(10,1.0), (15,0.15), (20,0.02), (20,0.01), (25,0.01), (25,0.005)\}.$

- In both sets, we let q ∈ {0, n/5, n/2, n}. For each combination, 5 random instance are generated.
- Relative/absolute optimality tolerance $= 10^{-6}$ and time limit = 500s.

220 polynomial optimization problems of degree three

• Average reductions of 60% in CPU time, 78% in number of nodes, and 70% in maximum number of nodes in memory.

220 polynomial optimization problems of degree four

• Average reductions of 43% in CPU time, 76% in number of nodes, and 72% in maximum number of nodes in memory.

Numerical Experiments – computer vision instances

- The purpose of image restoration is to estimate the original image from the degraded data. An image is modeled as a $l \times h$ matrix where each binary element x_{ij} represents a pixel.
- The image restoration problem is defined as the objective function f(x) = H(x) + L(x) to be minimized, where H(x) is linear and models similarity between the input blurred image and the output, L(x) is a multilinear function of degree four and models smoothness.
- Test set taken from [CramaRodrigez16] with images sizes $\{10 \times 10\}$, $\{10 \times 15\}$, $\{15 \times 15\}$.

Effect of adding cuts	CPU time	Iterations	Nodes
Better by a factor at least 2	17 (38%)	10 (23%)	10 (23%)
Between 30% and 100% better	13 (30%)	0 (0%)	0 (0%)
Difference smaller than 30%	14 (32%)	34 (77%)	34 (77%)
Between 30% and 100% worse	0 (0%)	0 (0%)	0 (0%)
Worse by a factor of at least 2	0 (0%)	0 (0%)	0 (0%)

• Average reductions of 63% in CPU time, 42% in number of iterations, and 30% in maximum number of nodes in memory.

Summary of the first lecture

- We define the multilinear set as the feasible region of a linearized binary polynomial optimization problem and we define the multilinear polytope as the convex hull of the multilinear set.
- We represent multilinear sets/polytopes by hypergraphs.
- Acyclic hypergraphs in increasing degree of generality:

Berge – acyclic $\subset \gamma$ – acyclic $\subset \beta$ – acyclic $\subset \alpha$ – acyclic

- The complexity of facial structure of the multilinear polytope is closely related to the acyclicity degree of the corresponding hypergraph
- Optimizing a linear function over the multilinear polytope of α -acyclic hypergraphs is NP-hard in general; however if the rank is bounded, then the multilinear polytope admits a polynomial-size extended formulation with at most $2^r|V|$ variables and inequalities.
- The multilinear polytope of β -acyclic hypergraphs admits a polynomial-size extended formulation with at most r|V| + |E| variables and inequalities.

Summary of the first lecture

- In the original space:
 - The standard linearization is the multilinear polytope if and only if the hypergraph is Berg-acyclic.
 - The flower relaxation is the multilinear polytope if and only if the hypergraph is γ -acyclic. May have exponentially many facets.
 - We do not have a characterizaton of the multilinear polytope of β -acyclic hypergraphs in the original space.
- The complete edge relaxation is the multilinear polytope if and only if the hypergraph is α -acyclic. Has at most $2^r |V|$ variables and inequalities.

Beyond hypergraph acyclicity

- We present a new framework that
 - unifies all prior results on the existence of polynomial-size extended formulations, and
 - provides polynomial-size extended formulations for the multilinear polytope of hypergraphs with β -cycles

Binary polynomial optimization

- Binary polynomial optimization is the problem of maximizing a multivariate polynomial function over the set of binary points.
- Based on the encoding of the polynomial function, we obtain two popular optimization problems: multilinear optimization and pseudo-Boolean optimization.
- With any G = (V, E), and $c \in \mathbb{R}^{V \cup E}$, we associate the multilinear optimization problem:

$$\max \qquad \sum_{v \in V} c_v z_v + \sum_{e \in E} c_e \prod_{v \in e} z_v \qquad (\mathsf{BPO}_m)$$

s.t.
$$z_v \in \{0, 1\} \qquad \forall v \in V.$$

Signed hypergraphs

- A signed hypergraph H as a pair (V, S), where V is a finite set of nodes and S is a set of signed edges.
- A signed edge s ∈ S is a pair (e, η_s), where e is a subset of V of cardinality at least two, and η_s is a map that assigns to each v ∈ e a sign η_s(v) ∈ {-1,+1}.
- The underlying edge of a signed edge $s = (e, \eta_s)$ is e.
- Two signed edges $s = (e, \eta_s)$, $s' = (e', \eta_{s'}) \in S$ are parallel if e = e', and they are identical if e = e' and $\eta_s = \eta_{s'}$.
- We consider signed hypergraphs with no identical signed edges but often with parallel signed edges.

Pseudo-Boolean optimization

• With any signed hypergraph H = (V, S), and cost vector $c \in \mathbb{R}^{V \cup S}$, we associate the pseudo-Boolean optimization problem:

$$\max \qquad \sum_{v \in V} c_v z_v + \sum_{s \in S} c_s \prod_{v \in s} \sigma_s(z_v) \qquad (BPO_{pB})$$

s.t. $z \in \{0, 1\}^V$,

where

$$\sigma_s(z_v) := \begin{cases} z_v & \text{if } \eta_s(v) = +1\\ 1 - z_v & \text{if } \eta_s(v) = -1. \end{cases}$$

• Define $z_s := \prod_{v \in s} \sigma_s(z_v)$ for all $s \in S$:

$$\max \sum_{v \in V} c_v z_v + \sum_{s \in S} c_s z_s, \qquad (\ell \operatorname{BPO}_{pB})$$
s.t.
$$z_s = \prod_{v \in s} \sigma_s(z_v), \ \forall s \in S$$

$$z_v \in \{0, 1\}, \ \forall v \in V.$$

Pseudo-Boolean sets and polytopes

• We define the pseudo-Boolean set of the signed hypergraph H = (V, S), as:

$$\mathcal{S}_{\mathrm{pB}}(H) := \Big\{ z \in \{0,1\}^{V \cup S} : z_s = \prod_{v \in s} \sigma_s(z_v), \ \forall s \in S \Big\},\$$

and we refer to its convex hull as the pseudo-Boolean polytope $\mathcal{P}_{pB}(H)$.

- If $\eta_s(v) = +1$ for all $v \in s$ and all $s \in S$, then the pseudo-Boolean set/polytope coincides with the multilinear set/polytope.
- Unlike the multilinear polytope, the pseudo-Boolean polytope is NOT full dimensional.
- Let $s_1 = \{1^-, 2^+, 3^+\}$, $s_2 = \{1^+, 2^+, 3^+\}$, $s_3 = \{2^+, 3^+\}$, then

$$z_{s_3} = z_{s_1} + z_{s_2}.$$

• Note that $z_{s_1} = (1 - z_1)z_2z_3$, $z_{s_2} = z_1z_2z_3$ and $z_{s_3} = z_2z_3$.

The underlying hypergraph vs the multilinear hypergraph

- The underlying hypergraph of a signed hypergraph H is the hypergraph obtained from H by ignoring signs and dropping parallel edges.
- The pseudo-Boolean optimization problem over a signed hypergraph H = (V, S)can be reformulated as a multilinear optimization problem over a hypergraph, which we call the multilinear hypergraph mh(H) of H.
- Let the underlying hypergraph of H be β -acyclic; then the multilinear hypergraph of H may contain many β -cycles.

$$z_s = (1 - z_1)(1 - z_2)(1 - z_3)$$

The pseudo-Boolean polytope versus the multilinear polytope

- Recall that the multilinear polytope is a special case of the pseudo-Boolean polytope.
- Let H = (V, S) be a signed hypergraph. If we have the description of the multilinear polytope of the multilinear hypergraph mh(H), then we can obtain a description of the pseudo-Boolean polytope $\mathcal{P}_{pB}(H)$ using:

$$\prod_{v \in s} \sigma_s(z_v) = \sum_{e \in E} d_e \prod_{v \in e} z_v + d_0, \quad \forall s \in S.$$

• Then an extended formulation for $\mathcal{P}_{pB}(H)$ is given by the description of $\mathcal{P}_m(G)$, where G := mh(H) together with the following equations:

$$z_s = \sum_{e \in E} d_e z_e + d_0, \quad \forall s \in S.$$

• However, $\mathcal{P}_m(G)$ with G = mh(H) may contain exponentially many more variables than $\mathcal{P}_{pB}(H)$.

The recursive inflate and decompose framework

- Main ingredients:
 - 1. A sufficient condition for decomposability of pseudo-Boolean polytopes.
 - 2. A polynomial-size extended formulation for the pseudo-Boolean polytope of pointed signed hypergraphs, which appears as a result of applying the decomposition technique.
 - 3. The inflation operation that we use to transform a large class of signed hypergraphs to those for which our results of Parts 1 and 2 are applicable.

Decomposability of pseudo-Boolean polytopes

- Consider a signed hypergraph H = (V, S), let $V_1, V_2 \subseteq V$ such that $V = V_1 \cup V_2$, let $S_1 \subseteq \{s \in S : s \subseteq V_1\}$, $S_2 \subseteq \{s \in S : s \subseteq V_2\}$ such that $S = S_1 \cup S_2$. Let $H_1 := (V_1, S_1)$ and $H_2 := (V_2, S_2)$.
- We say $\mathcal{P}_{pB}(H)$ is decomposable into $\mathcal{P}_{pB}(H_1)$ and $\mathcal{P}_{pB}(H_2)$, if the system comprised of a description of $\mathcal{P}_{pB}(H_1)$ and a description of $\mathcal{P}_{pB}(H_2)$, is a description of $\mathcal{P}_{pB}(H)$.
- Theorem: Assume the underlying hypergraph of H has a nest point v. Let $s_1 \subseteq s_2 \subseteq \cdots \subseteq s_k$ be the signed edges of H containing v, and assume S contains $s_i v$ for all $i \in [k]$. Then $\mathcal{P}_{pB}(H)$ is decomposable into $\mathcal{P}_{pB}(H_1)$ and $\mathcal{P}_{pB}(H_2)$, where $H_1 := (V_1, S_v \cup P_v)$, V_1 is the underlying edge of s_k , $S_v := \{s_1, \ldots, s_k\}$, $P_v := \{s_i v : |s_i v| \ge 2, i \in [k]\}$, and $H_2 := H v$.

The pseudo-Boolean polytope of pointed signed hypergraphs

- Consider a signed hypergraph H = (V,S) and let v ∈ V be a nest point of the underlying hypergraph of H. Denote by S_v the set of all signed edges in S containing v. Define P_v := {s v : s ∈ S_v, |s| ≥ 3}. We say that H s a pointed signed hypergraph if V coincides with the underlying edge of the signed edge of maximum cardinality in S_v and S = S_v ∪ P_v.
- Theorem: Let H = (V, S) be a pointed signed hypergraph. Then $\mathcal{P}_{pB}(H)$ has a polynomial-size extended formulation with at most 2|V|(|S|+1) variables and at most 4(|S|(|V|-2) + |V|) inequalities. Moreover, all coefficients and right-hand side constants in the system defining $\mathcal{P}_{pB}(H)$ are $0, \pm 1$.
- Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph is β -acyclic. Then the pseudo-Boolean polytope has a polynomial-size extended formulation with at most O(r|S||V|) variables and inequalities.

Inflation of signed edges

- Let H = (V, S) be a signed hypergraph, let $s \in S$, and let $e \subseteq V$ such that $s \subset e$. let I(s, e) be the set of all possible signed edges s' parallel to e such that $\eta_s(v) = \eta_{s'}(v)$ for every $v \in s$. Then H' = (V, S') is obtained from H by inflating s to e if $S' = S \cup I(s, e) \setminus \{s\}$.
- Theorem: Let H' = (V, S') be obtained from H by inflating s to e. Then an extended formulation of $\mathcal{P}_{pB}(H)$ can be obtained by an extended formulation of $\mathcal{P}_{pB}(H')$ and

$$z_s = \sum_{s' \in I(s,e)} z_{s'}.$$

If $\mathcal{P}_{pB}(H')$ has a polynomial-size extended formulation and $|e| - |s| = O(\log poly(|V|, |S|))$, then $\mathcal{P}_{pB}(H)$ has a polynomial-size extended formulation as well.

$$s_{1} = \{v_{1}^{+}, v_{2}^{+}\}, s_{2} = \{v_{1}^{+}, v_{3}^{+}\}, s_{3} = \{v_{3}^{+}, v_{2}^{+}\}$$
$$s_{4} = \{v_{1}^{-}, v_{2}^{+}, v_{3}^{+}\}, s_{5} = \{v_{1}^{+}, v_{2}^{+}, v_{3}^{+}\}$$
$$z_{s_{3}} = z_{s_{4}} + z_{s_{5}}$$

Inflation of signed edges

$$s_{1} = \{v_{1}^{+}, v_{2}^{+}\}, s_{2} = \{v_{1}^{+}, v_{3}^{+}\}, s_{3} = \{v_{3}^{+}, v_{2}^{+}\}$$
$$s_{4} = \{v_{1}^{-}, v_{2}^{+}, v_{3}^{+}\}, s_{5} = \{v_{1}^{+}, v_{2}^{+}, v_{3}^{+}\}$$
$$z_{s_{3}} = z_{s_{4}} + z_{s_{5}}$$

$$s_{1} = \{v_{1}^{+}, v_{2}^{+}\}, s_{2} = \{v_{2}^{+}, v_{4}^{+}\}, s_{3} = \{v_{3}^{+}, v_{4}^{+}\}, s_{4} = \{v_{1}^{+}, v_{4}^{+}\}$$

$$s_{5} = \{v_{1}^{+}, v_{2}^{+}, v_{3}^{+}, v_{4}^{+}\}, s_{6} = \{v_{1}^{-}, v_{2}^{+}, v_{3}^{+}, v_{4}^{+}\}$$

$$s_{7} = \{v_{1}^{+}, v_{2}^{-}, v_{3}^{+}, v_{4}^{+}\}, s_{8} = \{v_{1}^{-}, v_{2}^{-}, v_{3}^{+}, v_{4}^{+}\}$$

$$z_{s_{3}} = z_{s_{5}} + z_{s_{6}} + z_{s_{7}} + z_{s_{8}}$$

$$s_{1} = \{v_{1}^{+}, v_{2}^{+}\}, s_{2} = \{v_{2}^{+}, v_{4}^{+}\}, s_{3} = \{v_{3}^{+}, v_{4}^{+}\}, s_{4} = \{v_{1}^{+}, v_{4}^{+}\}$$

$$s_{5} = \{v_{2}^{+}, v_{3}^{+}, v_{4}^{+}\}, s_{6} = \{v_{2}^{-}, v_{3}^{+}, v_{4}^{+}\}$$

$$s_{7} = \{v_{1}^{+}, v_{2}^{+}, v_{4}^{+}\}, s_{8} = \{v_{1}^{+}, v_{2}^{-}, v_{4}^{+}\}$$

$$z_{s_{3}} = z_{s_{5}} + z_{s_{6}}, z_{s_{4}} = z_{s_{7}} + s_{s_{8}}$$

Applications of inflation

• Consider a signed hypergraph H = (V, S). Suppose that each $s \in S$ contains at least |V| - k nodes. Then the pseudo-Boolean polytope has an extended formulation with $O(2^k |V| |S|)$ variables and inequalities.

• Consider a signed hypergraph H = (V, S) of rank r. For each $s \in S$, among all maximal signed edges of H containing s, denote by f_s one with minimum cardinality. Let k be such that $|f_s| - |s| \le k$ for all $s \in S$. Let \overline{S} denote the set of maximal signed edges of H. If the underlying hypergraph of (V, \overline{S}) is β -acyclic, then the pseudo-Boolean polytope has an extended formulation with $O(r2^k|V||S|)$ variables and inequalities.

The Recursive inflate-and-decompose (RID) framework

- Input: A signed hypergraph H = (V, S), Output: An extended formulation for $\mathcal{P}_{pB}(H)$.
- Step 0. Set $H^{(0)} := H$, i := 0.
- Step 1. If we can obtain $\overline{H}^{(i)}$ from $H^{(i)}$ via a number of inflation operations, such that a suitable extended formulation for $\mathcal{P}_{pB}(\overline{H}^{(i)})$ is available, then we are done. Otherwise, go to Step 2.
- Step 2. Choose a node \bar{v} of $H^{(i)}$. If \bar{v} is a nest point of the underlying hypergraph of $H^{(i)}$, then set $\bar{H}^{(i)} := H^{(i)}$ and go to Step 3. Otherwise, construct $\bar{H}^{(i)}$ from $H^{(i)}$ via inflation operations, such that v is a nest point of the underlying hypergraph of $\bar{H}^{(i)}$. It suffices to find an extended formulation for $\mathcal{P}_{\mathrm{pB}}(\bar{H}^{(i)})$.
- Step 3. Decompose $\mathcal{P}_{pB}(\bar{H}^{(i)})$ into $\mathcal{P}_{pB}(\bar{H}^{(i)}_1)$ and $\mathcal{P}_{pB}(\bar{H}^{(i)}_2)$, where $\bar{H}^{(i)}_1$ denotes the signed hypergraph containing node \bar{v} . Since we have an extended formulation for $\mathcal{P}_{pB}(\bar{H}^{(i)}_1)$, it suffices to find an extended formulation for $\mathcal{P}_{pB}(\bar{H}^{(i)}_2)$. Set $H^{(i+1)} := \bar{H}^{(i)}_2$, increment *i* by one, and go to Step 1.

The Recursive inflate-and-decompose (RID) framework

- RID provides a polynomial-size extended formulation for $\mathcal{P}_{pB}(H)$ if the following conditions are satisfied:
 - In Step 1, the algorithm should terminate, only if a polynomial-size extended formulation for $\mathcal{P}_{pB}(\bar{H}^{(i)})$ is available.
 - The total number of new edges introduced as a result of inflation operations in Steps 1 and 2 is upper bounded by a polynomial in |V|, |S|.
- A simple way to obtain a nest point in Step 2 is to inflate each signed edge containing \bar{v} to the union of all signed edges containing \bar{v} .

- A node $v \in V$ is an α -leaf if the set of edges containing v has a maximal element for inclusion.
- A hypergraph is α -acyclic iff we can recursively remove α -leaves till obtaining an empty set.

Nest-sets

• Let G = (V, E) be a hypergraph and let $N \subseteq V$. We say that N is a nest-set of G, if the set

 $\{e \setminus N : e \in E, e \cap N \neq \emptyset\},\$

is totally ordered with respect to inclusion. If |N| = 1, then N contains a nest point of G (Lanzinger 2023).

- Let $N_1 \cdots N_t$ for some $t \ge 1$ be pairwise disjoint subsets of V such that $\bigcup_{i \in [t]} N_i = V$. We say that $\mathcal{N} = N_1, \cdots, N_t$ is a nest set elimination order of G, if N_1 is a nest set of G, N_2 is a nest-set of $G N_1$, and so on.
- Given a nest set elimination order \mathcal{N} of G, the nest-set width of this elimination order $nsw_{\mathcal{N}}(G)$, is the maximum cardinality of any element in \mathcal{N} .
- The nest-set width of $G \operatorname{nsw}(G)$, is the minimum value of $\operatorname{nsw}_{\mathcal{N}}(G)$ over all nest set elimination orders \mathcal{N} of G.
- nsw(G) = 1, if and only if G is a β -acyclic hypergraph.

Nest-sets, nest-set width, and nest-set gap

• Let G = (V, E), and let $V' \subseteq V$; we define the gap of G induced by V' as

$$\operatorname{gap}(G, V') := \max\left\{ |V'| - |e \cap V'| : e \in E, \ e \cap V' \neq \emptyset \right\}.$$

• Given a nest-set elimination order ${\mathcal N}$ of G, we define nest-set gap of ${\mathcal N}$ as

$$\operatorname{nsg}_{\mathcal{N}}(G) := \max \Big\{ \operatorname{gap}(G - N_1 - \dots - N_{i-1}, N_i) : i \in [t] \Big\},\$$

• We then have

$$\operatorname{nsg}_{\mathcal{N}}(G) \le \operatorname{nsw}_{\mathcal{N}}(G) - 1.$$

- The nest-set gap of G nsg(G), as the minimum value of $nsg_{\mathcal{N}}(G)$ over all nest-set elimination orders \mathcal{N} of G.
- Example: Consider a hypergraph G = (V, E) whose edge set E consists of all subsets of V of cardinality |V| − 1. Letting N = V \ {v̄}, {v̄} for some v̄ ∈ V, we have nsw(G) = |V| − 1, while nsg(G) = 1.

Nest-set width and nest-set gap

A hypergraph G with nsw(G) = 2 and nsg(G) = 1. $\mathcal{N} = \{1, 2\}, \{3\}, \{4\}, \{5\}, \{6, 7\}, \{8\}, \{9\}, \{10\}, \{11, 12\}, \{13\}.$ G contains β -cycles of length three.

Nest-set width and nest-set gap

- If G has a β -cycle of length ℓ , then $nsw(G) \ge \ell 1$.
- However, the converse does not hold.

This graph contains cycles of length four only, however, its nest-set width is |V| - 1.

• Question: Is it possible to give a characterization of nest-set width in terms of the size of the β -cycles in the hypergraph?

Hypergraphs with small nest-set gaps

- Deciding if $nsw(G) \le k$ for any integer k is NP-complete. However, when parameterized by k, this problem is fixed-parameter tractable (Lanzinger 2023):
- There exists a $2^{O(k^2)} \operatorname{poly}(|V|, |E|)$ time algorithm that takes as input hypergraph G = (V, E) and integer $k \ge 1$ and returns a nest set elimination \mathcal{N} with $\operatorname{nsw}_{\mathcal{N}}(G) = k$ if one exists, or rejects otherwise.
- Question: What is the complexity of checking whether the nest-set gap of a hypergraph is bounded?
- Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph G = (V, E) satisfies $nsg(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{pB}(H)$ has an extended formulation with $O(r2^k|V||S|)$ variables and inequalities. In particular, if $k \in O(\log poly(|V|, |S|))$, then $\mathcal{P}_{pB}(H)$ has a polynomial-size extended formulation. Moreover, all coefficients and right-hand side constants in the system defining $\mathcal{P}_{pB}(H)$ are $0, \pm 1$.

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph G = (V, E) satisfies $nsg(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{pB}(H)$ has an extended formulation with $O(r2^k|V||S|)$ variables and inequalities.

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\mathrm{pB}}(H)$ has an extended formulation with $O(r2^k|V||S|)$ variables and inequalities.

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\mathrm{pB}}(H)$ has an extended formulation with $O(r2^k|V||S|)$ variables and inequalities.

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\mathrm{pB}}(H)$ has an extended formulation with $O(r2^k|V|^2|S|)$ variables and inequalities.

The extension complexity of the Boolean quadric polytope

- The extension complexity of a polytope is defined as the minimum number of inequalities and equalities in an extended formulation of the polytope.
- Theorem: There exists a universal constant $\delta > \frac{1}{20}$ such that, for every graph G with n nodes, we have $\operatorname{xc}(\operatorname{QP}(G)) \ge 2^{\Omega((\operatorname{tw}(G))^{\delta} + \log n)}$ (Fiorini et al, 2019).
- Corollary: For any hypergraph G = (V, E), denote by G' the graph (V, E'), where E' contains all edges in E of cardinality two. Then there exists a universal constant $\delta > \frac{1}{20}$ such that for every hypergraph G with n nodes, we have $\operatorname{xc}(\mathcal{P}_{\mathrm{m}}(G)) \geq 2^{\Omega((\operatorname{tw}(G'))^{\delta} + \log n)}$.
- This lower bound implies an exponential extension complexity for hypergraphs with unbounded treewidth in which all subsets of cardinality two of each edge are also edges of the hypergraph; i.e., tw(G) = tw(G'). However, this lower bound can be arbitrarily weak, because tw(G') ≪ tw(G), in general.
The extension complexity of the pseudo-Boolean polytope

• Theorem: There exists constant $\delta > \frac{1}{20}$ such that, for every hypergraph G with n nodes with $r \in O(\log \operatorname{poly}(\operatorname{tw}(G)))$, there exists a signed hypergraph H with the underlying hypergraph G for which $\operatorname{xc}(\mathcal{P}_{\mathrm{pB}}(H)) \ge 2^{\Omega((\operatorname{tw}(G))^{\delta} + \log n)}$.

• Proof Sketch:

- Let G = (V, E), and let G' = (V, E') be the intersection graph of G; tw(G') = tw(G).
- For each edge $e \in E'$, there exists an edge $g \in E$ such that $e \subseteq g$; denote by g(e) one such edge of E.
- Define the signed hypergraph $\overline{H} = (V, \overline{S})$ obtained from G' by inflating each edge $e \in E'$ to g(e).
- Denote by r the rank of G; we have $|g(e)| \leq r$, therefore $|\bar{S}| \leq 2^r \cdot |E'|$.
- Since $|E'| \le |V|^2$ and r is a log-poly function in tw(G), $|\bar{S}|$ is upper bounded by a polynomial in tw(G).
- The underlying hypergraph of \overline{H} is a partial hypergraph of G; let H = (V, S)be a signed hypergraph with the underlying hypergraph G such that $S \supseteq \overline{S}$; $\operatorname{xc}(\mathcal{P}_{pB}(H)) \ge \operatorname{xc}(\mathcal{P}_{pB}(\overline{H})).$
- An extended formulation for QP(G') is given by an extended formulation for $\mathcal{P}_{pB}(\bar{H})$ together with |E'| equalities containing $|\bar{S}|$ variables. Since $xc(QP(G')) \ge 2^{\Omega((tw(G))^{\delta} + \log n)}$, we get $xc(\mathcal{P}_{pB}(\bar{H})) \ge 2^{\Omega((tw(G))^{\delta} + \log n)}$.

Open questions

- Statement 1: There exists a universal positive constant δ such that, for every signed hypergraph H with n nodes whose rank is upper bounded by a log-poly function in $\operatorname{tw}(H)$, we have $\operatorname{xc}(\mathcal{P}_{\mathrm{pB}}(H)) \geq 2^{\Omega((\operatorname{tw}(H))^{\delta} + \log n)}$.
- Statement 2: There exists a universal positive constant δ such that, for every hypergraph G with n nodes whose rank is upper bounded by a log-poly function in $\operatorname{tw}(G)$, we have $\operatorname{xc}(\mathcal{P}_{\mathrm{m}}(G)) \geq 2^{\Omega((\operatorname{tw}(G))^{\delta} + \log n)}$.
- If Statement 1 is true, then Statement 2 is true.
- These remain open even if we let the rank to be a constant.

References

- A. Del Pia and A. Khajavirad, The complete edge relaxation for binary polynomial optimization, working paper, 2025.
- A. Del Pia and A. Khajavirad, Beyond hypergraph acyclicity: limits of tractability for pseudo-Boolean optimization, arXiv:2410.23045, 2025.
- A. Del Pia and A. Khajavirad, The pseudo-Boolean polytope and polynomial-size extended formulations for binary polynomial optimization, Mathematical Programming Series A, 2024.
- A. Del Pia and A. Khajavirad, A polynomial-size extended formulation for the multilinear polytope of beta-acyclic hypergraphs, Mathematical Programming Series A, 2023.
- A. Del Pia and A. Khajavirad, The running intersection relaxation of the multilinear polytope, Mathematics of Operations Research, 2021.
- A. Del Pia, A. Khajavirad, and N. V. Sahinidis, On the impact of running-intersection inequalities for globally solving polynomial optimization problems, Mathematical Programming Computation, 2020.
- A. Del Pia and A. Khajavirad, The multilinear polytope for acyclic hypergraphs, SIAM Journal on Optimization, 2018.
- A. Del Pia and A. Khajavirad, On decomposability of multilinear sets, Mathematical Programming Series A, 2018.
- A. Del Pia and A. Khajavirad, A polyhedral study of binary polynomial programs, Mathematics of Operations Research, 2017.